How to manipulate bits in Javascript?
Let's say I have a variable X = 4
How to create a number with a binary representation 1111
(ones with length X
) using bitwise operators ( & | ~ << ^
) and take a position and toggle the bit at that position to zero (0)
.
Example:
X = initial(4) // X should be : 1111
Y = solution(X, 2) // Y should be 1101
Z = solution(Y, 3) // Z should be 1001
javascript bit-manipulation
add a comment |
Let's say I have a variable X = 4
How to create a number with a binary representation 1111
(ones with length X
) using bitwise operators ( & | ~ << ^
) and take a position and toggle the bit at that position to zero (0)
.
Example:
X = initial(4) // X should be : 1111
Y = solution(X, 2) // Y should be 1101
Z = solution(Y, 3) // Z should be 1001
javascript bit-manipulation
1
You can set a given biti
to0
withx & (~(1<<i))
.
– Willem Van Onsem
Nov 10 at 13:37
ok, how to go from number 4 to 1111 ?
– Badis Merabet
Nov 10 at 13:38
2
@BadisMerabet:(1<<(n+1))-1
.
– Willem Van Onsem
Nov 10 at 13:38
1
@WillemVanOnsem That's one1
too much:console.log(((1<<(4+1))-1).toString(2)) // "11111"
– Andreas
Nov 10 at 13:41
1
@Andreas: argh, yes,(1<<4)-1
.
– Willem Van Onsem
Nov 10 at 13:44
add a comment |
Let's say I have a variable X = 4
How to create a number with a binary representation 1111
(ones with length X
) using bitwise operators ( & | ~ << ^
) and take a position and toggle the bit at that position to zero (0)
.
Example:
X = initial(4) // X should be : 1111
Y = solution(X, 2) // Y should be 1101
Z = solution(Y, 3) // Z should be 1001
javascript bit-manipulation
Let's say I have a variable X = 4
How to create a number with a binary representation 1111
(ones with length X
) using bitwise operators ( & | ~ << ^
) and take a position and toggle the bit at that position to zero (0)
.
Example:
X = initial(4) // X should be : 1111
Y = solution(X, 2) // Y should be 1101
Z = solution(Y, 3) // Z should be 1001
javascript bit-manipulation
javascript bit-manipulation
edited Nov 10 at 13:54
asked Nov 10 at 13:35
Badis Merabet
2,2501630
2,2501630
1
You can set a given biti
to0
withx & (~(1<<i))
.
– Willem Van Onsem
Nov 10 at 13:37
ok, how to go from number 4 to 1111 ?
– Badis Merabet
Nov 10 at 13:38
2
@BadisMerabet:(1<<(n+1))-1
.
– Willem Van Onsem
Nov 10 at 13:38
1
@WillemVanOnsem That's one1
too much:console.log(((1<<(4+1))-1).toString(2)) // "11111"
– Andreas
Nov 10 at 13:41
1
@Andreas: argh, yes,(1<<4)-1
.
– Willem Van Onsem
Nov 10 at 13:44
add a comment |
1
You can set a given biti
to0
withx & (~(1<<i))
.
– Willem Van Onsem
Nov 10 at 13:37
ok, how to go from number 4 to 1111 ?
– Badis Merabet
Nov 10 at 13:38
2
@BadisMerabet:(1<<(n+1))-1
.
– Willem Van Onsem
Nov 10 at 13:38
1
@WillemVanOnsem That's one1
too much:console.log(((1<<(4+1))-1).toString(2)) // "11111"
– Andreas
Nov 10 at 13:41
1
@Andreas: argh, yes,(1<<4)-1
.
– Willem Van Onsem
Nov 10 at 13:44
1
1
You can set a given bit
i
to 0
with x & (~(1<<i))
.– Willem Van Onsem
Nov 10 at 13:37
You can set a given bit
i
to 0
with x & (~(1<<i))
.– Willem Van Onsem
Nov 10 at 13:37
ok, how to go from number 4 to 1111 ?
– Badis Merabet
Nov 10 at 13:38
ok, how to go from number 4 to 1111 ?
– Badis Merabet
Nov 10 at 13:38
2
2
@BadisMerabet:
(1<<(n+1))-1
.– Willem Van Onsem
Nov 10 at 13:38
@BadisMerabet:
(1<<(n+1))-1
.– Willem Van Onsem
Nov 10 at 13:38
1
1
@WillemVanOnsem That's one
1
too much: console.log(((1<<(4+1))-1).toString(2)) // "11111"
– Andreas
Nov 10 at 13:41
@WillemVanOnsem That's one
1
too much: console.log(((1<<(4+1))-1).toString(2)) // "11111"
– Andreas
Nov 10 at 13:41
1
1
@Andreas: argh, yes,
(1<<4)-1
.– Willem Van Onsem
Nov 10 at 13:44
@Andreas: argh, yes,
(1<<4)-1
.– Willem Van Onsem
Nov 10 at 13:44
add a comment |
1 Answer
1
active
oldest
votes
Yes, you'd use Math.pow
(or on modern browsers, the exponentiation operator, **
) and the bitwise operators to do that.
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Or — doh! — comments on the question point out that you can create the initial number without Math.pow
or exponentiation:
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
1
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53239502%2fhow-to-manipulate-bits-in-javascript%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Yes, you'd use Math.pow
(or on modern browsers, the exponentiation operator, **
) and the bitwise operators to do that.
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Or — doh! — comments on the question point out that you can create the initial number without Math.pow
or exponentiation:
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
1
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
add a comment |
Yes, you'd use Math.pow
(or on modern browsers, the exponentiation operator, **
) and the bitwise operators to do that.
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Or — doh! — comments on the question point out that you can create the initial number without Math.pow
or exponentiation:
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
1
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
add a comment |
Yes, you'd use Math.pow
(or on modern browsers, the exponentiation operator, **
) and the bitwise operators to do that.
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Or — doh! — comments on the question point out that you can create the initial number without Math.pow
or exponentiation:
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Yes, you'd use Math.pow
(or on modern browsers, the exponentiation operator, **
) and the bitwise operators to do that.
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
Or — doh! — comments on the question point out that you can create the initial number without Math.pow
or exponentiation:
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
function initial(digits) {
return Math.pow(2, digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
function initial(digits) {
return (1 << digits) - 1;
}
function solution(value, bit) {
return value & ~(1 << (bit - 1)); // () around `bit - 1` aren't necessary,
// but I find it clearer
}
var X = initial(4); // X should be : 1111
console.log(X.toString(2));
var Y = solution(X, 2); // Y should be 1101
console.log(Y.toString(2));
var Z = solution(Y, 3); // Z should be 1001
console.log(Z.toString(2));
edited Nov 10 at 13:49
answered Nov 10 at 13:41
T.J. Crowder
676k12011961292
676k12011961292
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
1
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
add a comment |
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
1
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
Yes, I like the second solution. more down to earth.
– Badis Merabet
Nov 10 at 13:49
1
1
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
@BadisMerabet - Yeah, I wasn't thinking "bits" enough, but fortunately Willem Van Onsem was.
– T.J. Crowder
Nov 10 at 13:51
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53239502%2fhow-to-manipulate-bits-in-javascript%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
You can set a given bit
i
to0
withx & (~(1<<i))
.– Willem Van Onsem
Nov 10 at 13:37
ok, how to go from number 4 to 1111 ?
– Badis Merabet
Nov 10 at 13:38
2
@BadisMerabet:
(1<<(n+1))-1
.– Willem Van Onsem
Nov 10 at 13:38
1
@WillemVanOnsem That's one
1
too much:console.log(((1<<(4+1))-1).toString(2)) // "11111"
– Andreas
Nov 10 at 13:41
1
@Andreas: argh, yes,
(1<<4)-1
.– Willem Van Onsem
Nov 10 at 13:44